
Formal Grammars
CHR ISTO PHE SE R VA N, PHD

Formal Grammar

• Formal Languages

• Regular Languages

• Context-free languages

• Context-sensitives languages

• Recursively enumerable languages

Once upon a time…

Alphabet, word

• An alphabet is a set of symbols.

A={a,b,c,d,e,f,0,1,2,3,4,5,6,7,8,9}

• We will use as alphabet always implicitly the set of all unicode characters.

A={0,...9,a...,z,A...Z,!,?,...}

• A word over an alphabet A is a sequence of symbols from A.

• Since we use the alphabet of unicode characters, words are just strings.

hello!, 42, 3.141592, Douglas and Sally

Language

• A language over an alphabet S is a set of words over S.

• Examples of interesting languages:

• The language of French words: {aimer, chat, sur, ...}

• The language of French sentences: {J’aime les chats, Le chat chante,...}

• The language of valid Java programs: {public static void main(...)..., ...}

• The language of terminating Java programs: {public...,...}

• The language of algebraic expressions: {(1+2)*3, (7-2)+(7+2), ...}

• The language of prime numbers: {2, 3, 5, 7, 11, ...}

• The language of person names: {Thomas Paine, Bertrand Russel,...}

• We want to do two things with languages:

• decide whether a given word belongs to the language

• generate the words of the language

Decision problem

• A decision problem is the question of whether a given string
(e.g. a natural number) belongs to a language
(e.g. the language of prime numbers).

112 18

19

4

42
1 2

7

Chomsky hierarchy

• It turns out that the decision problem is more difficult for certain
types of languages than for others. Languages are grouped as
follows:

All
Languages

Semi Decidable
Languages

Decidable
Languages

Context
Sensitive
Languages

Context
Free
Languages

Regular
Languages

regular expression

algebraic expression
Natural language

Terminating
algorithm

Language of programs
that terminate

Recognizing languages

• There are several formalisms that to recognize/generate the words of
a language:

• grammars (e.g., context-free grammars)

• simple automata (e.g., finite state automata)

• other formalisms (Turing machines, regular expressions)

• The main properties are:

• each level in the Chomsky hierarchy has its own type of grammar
(the decidable and semi-decidable ones have the same type)

• for each type of grammar, there is usually an equivalent automaton and
equivalent other formalisms

• most formalisms can not just recognize the languages, but also generate them

Formal grammar

• A (formal) grammar is a tuple of

• A finite set of nonterminal symbols (we write them in upper case)

• A start symbol

• A finite set of terminal symbols that is disjoint from (lower case)

• A finite set of production rules, each rule of the form

෍ራ𝑁 ∗𝑁 ෍ራ𝑁 ∗ → ෍ራ𝑁 ∗

Where * is the Kleene star, which allows repetition of the elements.

• Example:
N={S,NP,VP}
s=S
∑={they, run, love, you}
P ={ S →NP VP, NP → they, NP → you, VP → love, VP → run }

Language of a grammar

• A string of a grammar (N, s, ∑ , P) is an element of σڂ𝑁 ∗ (we use
Greek letters for strings). The grammar derives a string αβΥ
from a string αδΥ in one step, if there is a production rule δ -> β.
It derives a word (of terminal symbols) if there is a sequence of one s
tep derivations from the start symbol to the word.
The language of a grammar is the set of all derivable words.

• Example:

The grammar can both generate
the words of the language (by derivation)
and recognize them (by parsing, i.e., by finding
the derivations for the word).

N={S,NP,VP}
s=S
∑={they, run, love, you}
P ={ S →NP VP, NP → they, NP → you, VP → love, VP → run }

S →NP VP→ you VP→ you run

Formal Grammar

• Formal Languages

• Regular Languages

• Context-free languages

• Context-sensitives languages

• Recursively enumerable languages

Once upon a time…

Regular Grammar

• We will see 3 equivalent formalisms for regular languages: regular
grammars, finite state automata, and regular expressions.

• A (right) regular grammar has only productions of the following form

• B → a, where “B” is a non-terminal and “a” is a terminal

• B → aC, where “B” and “C” are non-terminals and “a” is a terminal

• B → ε, where is a non-terminal and “ε” is the empty string

Example:
N={S,A,B}
s=S
∑={a,b}
P ={S → aA, S → bB, A → aA, B → bB, A → ε, B → ε}

S →A → aA→ aaA→ aa

Regular Languages

• The languages that can be generated/recognized by a regular
grammar are the regular languages of the Chomsky Hierarchy.

• Example of regular languages:

• Search/replace patterns in editors

• Simple name entities

• Number, dates, quantities

• Regular languages are closed under:

• Union

• Intersection

• Complement

• Concatenation

• Iteration (Kleene star)

Finite State Machines

• A finite state machine (FSM) is a directed multi-graph, where each edge is
labelled with a symbol or the empty symbol “ε” .

• One node is labelled “start” (typically by an incoming arrow).

• Zero or more nodes are labelled “final” (typically by a double circle)

• The empty transition can be walked
without accepting a symbol:

• Multiple edges are written as:

ε

a

b

a,b

Recognizing words

• An FSM recognizes (also: generates, accepts) a string, if there is a
path from the start node to a final node whose edge labels are the
string.

Final

ad
bccd
bb

Start

FSM & regular languages

• Every Right Regular Grammar can be transformed into an equivalent
FSM as follows:

• introduce a state for every non‐terminal

• let the grammar start symbol be the initial state of the automaton

• introduce a final state F

• for every rule A→ a , add a transition from A to F with symbol a

• for every rule A→ aC , add a transition from A to C with symbol c

Example:
N={S,A,B}, s=S, ∑={a,b}
P ={S → aA, S → bB, A → aA, B → bB, A → ε, B → ε} S

A

a

A

b

a

b
F

ε

ε
Every FSM can be transformed into a grammar!

Regular expression cheat sheet

• L(a) = {a}

• L(ab) = {ab}

• L(a | b) = {a, b}

• L(a*) = { , a, aa, aaa, ...}

• L(a+) := L(aa*)

• L([a-z]) := L(a|b|...|z)

• L(a{2,4}) := L(aa|aaa|aaaa)

• L(a{3}) := L(aaa)

• L(a?) := L(ε | a)

• L(.) := {a|b|..|A|...|0|...|!|$|...}

• L(\.) := {.}

• Simple symbol

• Concatenation

• Disjunction

• Kleene star

• shorthand for “one or more”

• shorthand for a range

• shorthand for a given number

• shorthand for a given number

• shorthand for “optional”

• shorthand for “any symbol”

• escape sequence for special symbols

REGEX in programming

• Regex :

• Simplified Regex

• FSM

• Matcher

• 42(0)+

• 420(0)*

4 2 0

0
His favorite numbers are 42, 4200 and 19

Example RegEx in Python

import re
import sys
pattern = re.compile("42(0)+")
for line in sys.stdin:

match = re.search(pattern, line)
if match!=None:

print(match.group())

Example RegEx in Perl (in command line)

 echo “420000000” | perl –pe ‘s/42[0]+/NUM/g‘

NUM

Formal Grammar

• Formal Languages

• Regular Languages

• Context-free languages

• Context-sensitives languages

• Recursively enumerable languages

Once upon a time…

Context-Free Grammar

A context-free grammar has only production where the left-hand-side
is a single non-terminal.

Example:
N={S,NP,VP},
s=S,
∑={they, run,love,you}
P ={S →NP VP, NP → they, NP → you, VP → love, VP → run}

Context-free Languages

The languages that can be generated/recognized by a context‐free
grammar are the context‐free languages of the Chomsky Hierarchy

Examples for context‐free languages:

 algebraic expressions

 simple programming languages

 simplistic models of natural language sentences

 ...or anything with nested structures

Context‐free languages are closed under:

 concatenation

Kleene star

 ...but not under intersection or complement.

Phrase structure grammars

S →NP VP

NP → PN

VP →V

NP →DET ADJ N

PN →Howard

DET → the

…

S

VP

NP

PP

NP

N

NPNP

ADJN DETPREPDETVPN

Howard is the father of the little Tony

Pushdown Automaton

Given an input alphabet ∈ Σ , a stack alphabet ∈ Γ , and a start symbol Z∈ Γ,
a pushdown automaton (PDA) is a directed multi‐graph, were each edge
is labeled with :

• a symbol ∈ Γ∗ to read from the input (or ε)

• a symbol ∈ Γ∗ to pop from the stack (or ε)

• a sequence of symbols ∈ Γ∗ to push onto the stack

One node is labeled “start”, and zero or more nodes are labeled “final”.

Read: (
Pop: ε
Push: 1

Read:)
Pop: 1
Push: ε

Read: ε
Pop: Γ
Push: ε

Running of a PDA

A configuration of a PDA is a triple of a node q, an input string w ∈ Σ∗, and a stack β ∈
Γ∗. The step relation is defined for all w ∈ Σ∗, β ∈ Γ∗ as the following relation between
configurations:

<q,cw,tβ> ⊢ <q’,w, γβ>

if there is an edge from q to q’ that is labeled with “read c, pop t, push γ”. A word w is
recognized by the PDA, if ∃ β : <𝑞0,w,Z> ⊢∗ <q, ε, β> where 𝑞0 is the start node and
𝑞 is a final node.

The language of a PDA is the set of recognized words

Read: (
Pop: ε
Push: 1

Read:)
Pop: 1
Push: ε

Read: ε
Pop: Γ
Push: ε

Context‐free grammars & PDAs

For every context-free grammar there is an equivalent pushdown
automaton and vice versa. To construct the PDA for a context-free
grammar, normalize the rules so that they are all of the following forms:

A → ε, A → a, A → BC

Be S the start symbol. Then construct the non-deterministic PDA as:

Read: a
Pop: A
Push: ε

Read: ε
Pop: A
Push: BC

Read: ε
Pop: Γ
Push: ε

Read: ε
Pop: ε
Push: S

A → a A → BC

Limitations of context‐free grammars

Context‐free grammars need extensive duplication of non-terminal symbols
to model dependencies between words:

Sentence -> FirstPersonSingularSentence | SecondPerson...
FirstPersonSingularSentence-> “I” FirstPersonSingularVerbPhrase
FirstPersonSingularVerbPhrase -> “go” | “love” | ...

Various remedies have been devised, e.g., using arguments that can be
compiled away:

Sentence(p,n) -> NounPhrase(p,n) VerbPhrase(p,n)
NounPhrase(1,s) -> “I”

...or devising “weakly context-sensitive grammars”. No context‐free grammar
can recognize

L={𝑎𝑛𝑏𝑛𝑐𝑛 : n > 0}

Context‐free Languages

The following statements are equivalent for a language L :

• L is context‐free

• L can be recognized by a pushdown automaton

• L can be generated by a pushdown automaton

• L can be recognized by a context‐free grammar

• L can be generated by a context‐free grammar

Recognizing a word of a regular language takes polynomial time.

Every regular language is a context‐free language.

