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Formal Grammar

• Formal Languages

• Regular Languages

• Context-free languages

• Context-sensitives languages

• Recursively enumerable languages

Once upon a time…



Alphabet, word

• An  alphabet  is a set of symbols. 

A={a,b,c,d,e,f,0,1,2,3,4,5,6,7,8,9} 

• We will use as alphabet always implicitly the set of all unicode characters. 

A={0,...9,a...,z,A...Z,!,?,...} 

• A  word  over an alphabet A is a sequence of symbols from A. 

• Since we use the alphabet of unicode characters, words are just strings. 

hello!, 42, 3.141592, Douglas and Sally



Language

• A  language  over an alphabet S is a set of words over S. 

• Examples of interesting languages: 

• The language of French words: {aimer, chat, sur, ...} 

• The language of French sentences: {J’aime les chats, Le chat chante,...} 

• The language of valid Java programs: {public static void main(...)..., ...} 

• The language of terminating Java programs: {public...,...} 

• The language of algebraic expressions: {(1+2)*3, (7-2)+(7+2), ...} 

• The language of prime numbers: {2, 3, 5, 7, 11, ...} 

• The language of person names: {Thomas Paine, Bertrand Russel,...} 

• We want to do two things with languages: 

• decide whether a given word belongs to the language 

• generate the words of the language 



Decision problem

• A  decision problem  is the question of whether a given string 
(e.g. a natural number ) belongs to a language  
(e.g. the language of prime numbers ).
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Chomsky hierarchy

• It turns out that the decision problem is more difficult for certain 
types of languages than for others. Languages are grouped as 
follows:

All 
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Languages

Context 
Sensitive 
Languages

Context 
Free
Languages

Regular 
Languages

regular expression

algebraic expression
Natural language

Terminating
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Recognizing languages

• There are several formalisms that to recognize/generate the words of 
a language:

• grammars (e.g., context-free grammars)

• simple automata (e.g., finite state automata)

• other formalisms (Turing machines, regular expressions)

• The main properties are:

• each level in the Chomsky hierarchy has its own type of grammar
(the decidable and semi-decidable ones have the same type)

• for each type of grammar, there is usually an equivalent automaton and 
equivalent other formalisms

• most formalisms can not just recognize the languages, but also generate them



Formal grammar

• A  (formal) grammar  is a tuple of 

• A finite set   of nonterminal symbols (we write them in upper case)

• A start symbol

• A finite set   of terminal symbols that is disjoint from   (lower case)

• A finite set   of production rules, each rule of the form  

ራ𝑁 ∗𝑁 ራ𝑁 ∗ → ራ𝑁 ∗

Where * is the Kleene star, which allows repetition of the elements.

• Example:
N={S,NP,VP} 
s=S 
∑={they, run, love, you} 
P ={ S →NP VP, NP → they, NP → you, VP → love, VP → run }



Language of a grammar

• A string of a grammar (N, s, ∑ , P) is an element of σڂ𝑁 ∗ (we use 
Greek letters for strings). The grammar derives a string αβΥ
from a string αδΥ in one step, if there is a production rule δ -> β. 
It derives a word (of terminal symbols) if there is a sequence of one s
tep derivations from the start symbol to the word. 
The language of a grammar is the set of all derivable words.

• Example:

The grammar can both generate
the words of the language (by derivation)
and recognize them (by parsing, i.e., by finding
the derivations for the word).

N={S,NP,VP} 
s=S 
∑={they, run, love, you} 
P ={ S →NP VP, NP → they, NP → you, VP → love, VP → run }

S →NP VP→ you VP→ you run
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Regular Grammar

• We will see 3 equivalent formalisms for regular languages: regular 
grammars, finite state automata, and regular expressions. 

• A  (right) regular grammar  has only productions of the following form

• B → a, where “B” is a non-terminal and  “a” is a terminal

• B → aC, where “B” and “C” are non-terminals and “a” is a terminal

• B → ε, where   is a non-terminal and  “ε” is the empty string

Example:
N={S,A,B} 
s=S 
∑={a,b} 
P ={S → aA, S → bB, A → aA, B → bB, A → ε, B → ε}

S →A → aA→ aaA→ aa



Regular Languages

• The languages that can be generated/recognized by a regular
grammar are the regular languages of the Chomsky Hierarchy.

• Example of regular languages:

• Search/replace patterns in editors

• Simple name entities

• Number, dates, quantities

• Regular languages are closed under:

• Union

• Intersection

• Complement

• Concatenation

• Iteration (Kleene star)



Finite State Machines

• A  finite state machine  (FSM) is a directed multi-graph, where each edge is 
labelled with a symbol or the empty symbol  “ε” . 

• One node is labelled “start” (typically by an incoming arrow). 

• Zero or more nodes are labelled “final” (typically by a double circle)

• The empty transition can be walked 
without accepting a symbol:

• Multiple edges are written as:

ε

a

b

a,b



Recognizing words

• An FSM recognizes (also: generates, accepts) a string, if there is a 
path from the start node to a final node whose edge labels are the 
string.

Final

ad 
bccd
bb

Start



FSM & regular languages

• Every Right Regular Grammar can be transformed into an equivalent
FSM as follows:

• introduce a state for every non‐terminal

• let the grammar start symbol be the initial state of the automaton

• introduce a final state F

• for every rule A→ a , add a transition from A to F with symbol a

• for every rule A→ aC , add a transition from A to C with symbol c

Example:
N={S,A,B}, s=S, ∑={a,b} 
P ={S → aA, S → bB, A → aA, B → bB, A → ε, B → ε} S

A

a

A

b

a

b
F

ε

ε
Every FSM can be transformed into a grammar!



Regular expression cheat sheet

• L(a) = {a} 

• L(ab) = {ab} 

• L(a | b) = {a, b} 

• L(a*) = { , a, aa, aaa, ...} 

• L(a+) := L(aa*) 

• L([a-z]) := L(a|b|...|z) 

• L(a{2,4}) := L(aa|aaa|aaaa) 

• L(a{3}) := L(aaa) 

• L(a?) := L(ε | a) 

• L(.) := {a|b|..|A|...|0|...|!|$|...} 

• L(\.) := {.}

• Simple symbol

• Concatenation

• Disjunction

• Kleene star 

• shorthand for “one or more” 

• shorthand for a range 

• shorthand for a given number

• shorthand for a given number

• shorthand for “optional” 

• shorthand for “any symbol” 

• escape sequence for special symbols



REGEX in programming

• Regex :

• Simplified Regex

• FSM

• Matcher

• 42(0)+

• 420(0)*

4 2 0

0
His favorite numbers are 42, 4200 and 19



Example RegEx in Python

import re 
import sys
pattern = re.compile("42(0)+") 
for line in sys.stdin:

match = re.search(pattern, line) 
if match!=None:

print(match.group())



Example RegEx in Perl (in command line)

 echo “420000000” | perl –pe ‘s/42[0]+/NUM/g‘

NUM
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Context-Free Grammar

A context-free grammar has only production where the left-hand-side 
is a single non-terminal.

Example:
N={S,NP,VP}, 
s=S, 
∑={they, run,love,you} 
P ={S →NP VP, NP → they, NP → you, VP → love, VP → run}



Context-free Languages

The languages that can be generated/recognized by a context‐free 
grammar are the context‐free languages of the Chomsky Hierarchy

Examples for context‐free languages:

 algebraic expressions 

 simple programming languages

 simplistic models of natural language sentences

 ...or anything with nested structures

Context‐free languages are closed under:

 concatenation

Kleene star

 ...but not under intersection or complement.



Phrase structure grammars

S →NP VP

NP → PN

VP →V

NP →DET ADJ N

PN →Howard

DET → the

…

S

VP

NP

PP

NP

N

NPNP

ADJN DETPREPDETVPN

Howard is the father of the little Tony



Pushdown Automaton

Given an input alphabet ∈ Σ , a stack alphabet ∈ Γ , and a start symbol Z∈ Γ, 
a pushdown automaton (PDA) is a directed multi‐graph, were each edge
is labeled with :

• a symbol ∈ Γ∗ to read from the input (or ε )

• a symbol ∈ Γ∗ to pop from the stack (or ε )

• a sequence of symbols ∈ Γ∗ to push onto the stack 

One node is labeled “start”, and zero or more nodes are labeled “final”. 

Read: (
Pop: ε
Push: 1

Read: )
Pop: 1
Push: ε

Read: ε
Pop: Γ
Push: ε



Running of a PDA

A configuration of a PDA is a triple of a node q, an input string w ∈ Σ∗, and a stack β ∈
Γ∗. The step relation is defined for all w ∈ Σ∗, β ∈ Γ∗ as the following relation between 
configurations: 

<q,cw,tβ> ⊢ <q’,w, γβ>

if there is an edge from q to q’ that is labeled with “read c, pop t, push γ”. A word w is 
recognized by the PDA, if ∃ β : <𝑞0,w,Z> ⊢∗ <q, ε, β> where 𝑞0 is the start node and 
𝑞 is a final node. 

The language of a PDA is the set of recognized words

Read: (
Pop: ε
Push: 1

Read: )
Pop: 1
Push: ε

Read: ε
Pop: Γ
Push: ε



Context‐free grammars & PDAs

For every context-free grammar there is an equivalent pushdown 
automaton and vice versa. To construct the PDA for a context-free 
grammar, normalize the rules so that they are all of the following forms:

A → ε, A → a, A → BC

Be S the start symbol. Then construct the non-deterministic PDA as:

Read: a
Pop: A
Push: ε

Read: ε
Pop: A
Push: BC

Read: ε
Pop: Γ
Push: ε

Read: ε
Pop: ε
Push: S

A → a A → BC



Limitations of context‐free grammars 

Context‐free grammars need extensive duplication of non-terminal symbols
to model dependencies between words: 

Sentence -> FirstPersonSingularSentence | SecondPerson...
FirstPersonSingularSentence-> “I” FirstPersonSingularVerbPhrase
FirstPersonSingularVerbPhrase -> “go” | “love” | ...

Various remedies have been devised, e.g., using arguments that can be
compiled away: 

Sentence(p,n) -> NounPhrase(p,n) VerbPhrase(p,n)
NounPhrase(1,s) -> “I”

...or devising “weakly context-sensitive grammars”. No context‐free grammar
can recognize

L={𝑎𝑛𝑏𝑛𝑐𝑛 : n > 0} 



Context‐free Languages

The following statements are equivalent for a language L :

• L is context‐free

• L can be recognized by a pushdown automaton

• L can be generated by a pushdown automaton

• L can be recognized by a context‐free grammar

• L can be generated by a context‐free grammar

Recognizing a word of a regular language takes polynomial time.

Every regular language is a context‐free language. 


