Formal Grammars

CHRISTOPHE SERVAN, PHD

* Formal Languages

* Regular Languages

* Context-free languages
 Context-sensitives languages

* Recursively enumerable languages

Formal Grammar

Once upon a time...

Alphabet, word

An alphabet is a set of symbols.

A={a, b/ Cldlelfl 0,1,2,3,4,5, 617181 9}

We will use as alphabet always implicitly the set of all unicode characters.

A={o,...9,a...,.z,A...Z,?,...}

A word over an alphabet A is a sequence of symbols from A.

Since we use the alphabet of unicode characters, words are just strings.

hello!, 42, 3.141592, Douglas and Sally

Language

* A language over an alphabetSis a set of words overS.

« Examples of interesting languages:
* The language of French words: {aimer, chat, sur, ...}
* The language of French sentences: {J'aime les chats, Le chat chante,...}
* The language of valid Java programs: {public static void main(...)..., ...}
* The language of terminating Java programs: {public...,...}
* The language of algebraic expressions: {(1+2)*3, (7-2)+(7+2), ...}
* The language of prime numbers: {2, 3, 5, 7, 11, ...}

* The language of person names: {Thomas Paine, Bertrand Russel,...}

* We want to do two things with languages:
* decide whether a given word belongs to the language

* generate the words of the language

Decision problem

* A decision problem is the question of whether a given string
(e.g. a natural number) belongs to a language
(e.g. the language of prime numbers).

Chomsky hierarchy

* It turns out that the decision problem is more difficult for certain
types of languages than for others. Languages are grouped as
follows:

Recognizing languages

* There are several formalisms that to recognize/generate the words of
a language:

* grammars (e.g., context-free grammars)

* simple automata (e.qg., finite state automata)

* other formalisms (Turing machines, reqular expressions)

* The main properties are:

each level in the Chomsky hierarchy has its own type of grammar
(the decidable and semi-decidable ones have the same type)

for each type of grammar, there is usually an equivalent automaton and
equivalent other formalisms

most formalisms can not just recognize the languages, but also generate them

Formal grammar

A (formal) grammar is a tuple of

A finite set of nonterminal symbols (we write them in upper case)

A start symbol

A finite set of terminal symbols that is disjoint from (lower case)

A finite set of production rules, each rule of the form
(2Ur)-+(ZU)-~(2Ux):

Where * is the Kleene star, which allows repetition of the elements.

* Example:
N={S,NP,VP}

s=S
Y=f{they, run, love, you}
P={S — NPVP, NP — they, NP — you, VP — love, VP = run}

Language of a grammar

* Astring of agrammar (N, s, Y, P)is an element of (3; U N) * (we use
Greek letters for strings). The grammar derives a string afY
from a string adY in one step, if there is a production rule 6 -> B.
It derives a word (of terminal symbols) if there is a sequence of one s
tep derivations from the start symbol to the word.
The language of a grammar is the set of all derivable words.

The grammar can both generate

the words of the language (by derivation)

and recognize them (by parsing, i.e., by finding
the derivations for the word).

* Example:

N= S - NP VP - you VP — you run

~A

S,NPVP}

y={they, run, love, you}
P ={S > NP VP, NP — they, NP — you, VP - love, VP — run}

* Formal Languages

* Regular Languages

* Context-free languages
 Context-sensitives languages

* Recursively enumerable languages

Formal Grammar

Once upon a time...

Regular Grammar

* We will see 3 equivalent formalisms for reqular languages: reqular
grammars, finite state automata, and regular expressions.

* A (right) regular grammar has only productions of the following form
* B — a, where "B"” is a non-terminal and “a” is a terminal

* B— aC, where "B” and “"C” are non-terminals and “a” is a terminal

* B— g, where isanon-terminaland “€"” is the empty string

Example:
N={S,A,B}
s=S
>={a,b}
P={S—>aA, S—>bB,A—aA B—>bB,A—>¢g B— ¢}

S—>A—->aA—aaA—aa

Regular Languages

* The languages that can be generated/recognized by a regular
grammar are the regular languages of the Chomsky Hierarchy.

* Example of reqgular languages:
* Search/replace patterns in editors
* Simple name entities

* Number, dates, quantities

* Regular languages are closed under:
* Union
* Intersection
* Complement
¢ Concatenation

* |teration (Kleene star)

Finite State Machines

A finite state machine (FSM) is a directed multi-graph, where each edge is
labelled with a symbol or the empty symbol “€”

One node is labelled “start” (typically by an incoming arrow).

Zero or more nodes are labelled “final” (typically by a double circle)

8 d
The empty transition can be walked ¢
without accepting a symbol:

Multiple edges are written as:

‘a'b‘

Recognizing words

* An FSM recognizes (also: generates, accepts) a string, if there is a
path from the start node to a final node whose edge labels are the

string.
Start . ;

C

ad v/
bccd V
bb

Final

FSM & reqular languages

* Every Right Regular Grammar can be transformed into an equivalent
FSM as follows:

* introduce a state for every non-terminal

let the grammar start symbol be the initial state of the automaton

introduce a final state F

forevery rule A — a, add atransition from A to F with symbol a

forevery rule A — aC, add a transition from A to C with symbol ¢

Example:
N={S,A, B}, s=S, Y={a,b}
P={S—aA,S—>bB,A—>aA B—->bB A—¢g B— ¢}

Every FSM can be transformed into a grammar!

Regular expression cheat sheet

* L(a) = {a} * Simple symbol

* L(ab) = {ab} * Concatenation

* L(a|b)=1{a, b} * Disjunction

* L(a*)={, q, aq, aaaq, ...} * Kleene star

e L(a+):=L(aa*) * shorthand for “one or more”

* L([a-z]) := L(alb]...|2) * shorthand for arange

* L(af2,4}) := L(aalaaalaaaa) * shorthand for a given number
* L(af3}) := L(aaa) * shorthand for a given number
* L(@?):=L(g]|a) * shorthand for “optional”

* L(.):={a|b|..|Al...]o|...]!| $].. 3 * shorthand for “any symbol”

° L(\.):={3 * escape sequence for special symbols

REGEX in programming

* Regex: * £2(0)+

 Simplified Regex * £20(0)*

* FSM A pi 0

* Matcher ‘ ‘ ‘ 9

His favorite numbers are 42, 4200 and 19

Example RegEx in Python

Import re
Import sys
pattern = re.compile("42(0)+")
forline in sys.stdin:
match = re.search(pattern, line)
if match!'=None:
print(match.group())

Example RegEx in Perl (in command line)

— echo “420000000” | perl —pe ‘s/42[0]+/NUM/g"

— NUM

* Formal Languages
* Regular Languages

* Context-free languages

 Context-sensitives languages

* Recursively enumerable languages

Formal Grammar

Once upon a time...

Context-Free Grammar

A context-free grammar has only production where the left-hand-side
is a single non-terminal.

Example:
N={S,NPVP},
s=S5,
Y =fthey, run,love,you}
P ={S - NP VP, NP = they, NP — you, VP = love, VP - run}

Context-free Languages

The languages that can be generated/recognized by a context-free
grammar are the context-free languages of the Chomsky Hierarchy

Examples for context-free languages:
—> algebraic expressions
— simple programming languages
— simplistic models of natural language sentences
— ...or anything with nested structures

Context-free languages are closed under:
—> concatenation
—Kleene star
— ...but not under intersection or complement.

Phrase structure grammars

S

N

VP

\
NP

~—

PP\

| A /NP\ \\

PN V DET N PREP DET ADJ

Howard is the father of the little Tony

S - NPVP
NP — PN

VP -V

NP — DET ADJ N
PN — Howard
DET — the

Pushdown Automaton

Given an input alphabet €3 |, astackalphabet €I’ , and a start symbol Z€T,
a ||3u|§h|d<(>jwn_ ahutomaton (PDA) is a directed multi-graph, were each edge
IS labeled with :

* asymbol €I'* toread from the input (or€)
* asymbol €I'* to pop from the stack (or €)
* asequence of symbols € I'* to push onto the stack

One node is labeled “start”, and zero or more nodes are labeled “final”.
I

Read: €
m Pop: T
Push: €

Read:(Read:)
Pop: € Pop: 1
Push:1 pysh: ¢

Running of a PDA

A configuration of a PDAis a triple of a node g, an input strinﬂ wE X", and astack B €
['*. The'step relation is defined for all w € Z*,% € I'* as the following relation between
configurations:

<qICWIt[3> I_ <(:IIIWI yB>

if there is an edge from g to g’ that is [abeled with “read c, pop t, push y”. Aword w is

recognized by the PDA, if 3 B : <qqo,w,Z> " <q, €, B> where g is the start node and
q isafinal node.

The language of a PDA is the set of recognized words

Read: €
<i:’llk:i> Pop: T
Push: €

Pop: € Pop: 1
Push:1 pysh: ¢

Context-free grammars & PDAs

For every context-free grammar there is an equivalent pushdown
automaton and vice versa. To construct the PDA for a context-free
grammar, normalize the rules so that they are all of the following forms:

A—-¢gA—-a A—-BC

Be S the start symbol. Then construct the non-deterministic PDA as:

Read: € Read: €
Pop: € m Pop: I’
Push: S Push: €

Read: @ Read: ¢

Pop: A Pop: A
A—a Push:e Push: BC A-BC

Limitations of context-free grammars

Context-free grammars need extensive duplication of non-terminal symbols
to model dependencies between words:

Sentence -> FirstPersonSingularSentence | SecondPerson...

FirstPersonSingularSentence-> "1” FirstPersonSingularVerbPhrase
FirstPersonSingularVerbPhrase -> “go” | “love” | ...

Various remedies have been devised, e.g., using arguments that can be
compiled away:

Sentence(p,n) -> NounPhrase(p,n) VerbPhrase(p, n)
NounPhrase(a,s) -> "I”

...or devising “weakly context-sensitive grammars”. No context-free grammar
can recognize

L={a™b"c™ : n > 0}

Context-free Languages

The following statements are equivalent for a language L:
* L is context-free

* L can be recognized by a pushdown automaton

* L can be generated by a pushdown automaton

* L can be recognized by a context-free grammar

* L can be generated by a context-free grammar
Recognizing a word of a regular language takes polynomial time.

Every regular language is a context-free language.

